Evaluating the Use of ASAP-HMQC and Sensitivity-Edited HSQC Spectra Acquired with Non-Uniform Sampling for Rapid Screening of Organic Samples

Darcy C. Burns¹, Rosemary C. Breton¹, Raul G. Enriquez² and William F. Reynolds¹

1. Department of Chemistry, University of Toronto, ON, Canada
2. Instituto de Química, Universidad Nacional Autónoma de México, DF, México

There has been increasing interest in using edited HSQC spectra in combination with 1H and 13C data sets for screening organic compounds. However, the time and/or sample concentration still inhibits this approach unless one has access to a cryoprobe. An alternative would be to use the ASAP-HMQC sequence of Freeman and Kupce, which allows for faster acquisition but does not provide spectral editing and gives slightly poorer 13C resolution. However, significant further improvements are possible with the availability of software for acquiring and processing non-uniformed sampled (NUS) 2D data.

We have investigated this possibility using an Agilent DD2-600 NMR spectrometer equipped with a OneNMR (room temperature) probe. Using 10mM (ca 2 mg) solutions of representative organic compounds, we find that, with the aid of NUS, it is feasible to obtain high quality 2D shift-correlated spectra in 1.5 minutes or less with ASAP-HMQC and as little as 3 minutes with the sensitivity-enhanced CRISIS2-gHSQC sequence. In each case, the time to acquire a spectrum is less than the ‘overhead’ time required for a sample changer to replace one sample with another, followed by locking, tuning and shimming. Thus, there would be limited advantage in further decreasing acquisition times, although a cryoprobe would allow one to further decrease the sample concentration requirements.